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ABSTRACT: Synthetic biology is typically exploited to
endow bacterial cells with new biosynthetic capabilities. It
can also serve to create “smart” bacteria such as probiotics that
detect and treat disease. Here, we show how minimally
rewiring the genetic regulation of bacterial cells can enable
their ability to recognize and report on chemical herbicides,
including those routinely used to clear weeds from gardens
and crops. In so doing, we demonstrate how constructs of
synthetic biology, in this case redox-based synthetic biology,
can serve as a vector for information flow mediating molecular
communication between biochemical systems and micro-
electronics. We coupled the common genetic reporter, β-
galactosidase, with the E. coli superoxide response regulon
promoter pSoxS, for detection of the herbicides dicamba and Roundup. Both herbicides activated our genetic construct in a
concentration dependent manner. Results indicate robust detection using spectrophotometry, via the Miller assay, and
electrochemistry using the enzymatic cleavage of 4-aminophenyl β-D-galactopyranoside into the redox active molecule p-
aminophenol. We found that environmental components, in particular, the availability of glucose, are important factors for the
cellular detection of dicamba. Importantly, both herbicides were detected at concentrations relevant for aquatic toxicity.
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Reporter cells have been developed over the last 20 years
for sensing specific molecular cues in medical and

environmental diagnostics.1−8 These cellular “devices” have
typically converted the molecular cues into fluorescent or
chemiluminescent read-outs which can require bulky or
sophisticated apparatus for integrated measurement.9−11 Our
group has sought to use synthetic biology as a means to
convert molecular information into a readily recorded electrical
format.12−16 Our methods revolve around converting in-
formation into a redox reaction which can be monitored by the
donation or retrieval of electrons from a charged electrode. In
this way, one avoids bulky and sophisticated instrumentation.
Instead, we use the cell’s natural recognition and computing
power to transduce information from the environment to a
simple electrochemical format.
While cell-based biosensing is prevalent in environmental

diagnostics, their use for the detection of herbicide
contamination has been limited. In particular, with the new
generation of herbicide resistant plants, such as those
engineered to contain bacterial-origin dicamba-monooxyge-
nase, the use of volatile herbicides has become problematic,
with reported incidents of gaseous drift to neighboring
fields.17−19 Dicamba, an auxin-mimetic herbicide, has been
found to cause environmental contamination due to airborne-

dispersal practices and its high water solubility.18,20−22 It has
also been reported as a domestic water supply contaminant in
both the United States and Canada.23−26 However, rapid and
facile detection of dicamba can be difficult as it has few easily
accessed molecular features (e.g., it has neither a fluorescence
nor electrochemical signature). It is commonly detected,
therefore, using classical analytical chemistry techniques such
as mass spectroscopy.27−30 We have sought to develop a
simple cell-based sensing platform that could process
herbicidal molecular information and store it in a format that
could be readily accessed.
A recent report Kurenbach et al. (2015)31 indicated that

microbes, such as Escherichia coli, respond to dicamba through
the SoxRS regulon that coordinates cell responses to oxidative
stress.32−39 In this study, we have repurposed this response
circuit for the detection of dicamba through SoxRS-mediated
expression of the lacZ gene encoding β-galactosidase. We
further discovered that diquat, a broad-spectrum active
ingredient of Roundup, can also trigger SoxRS-mediated β-
galactosidase expression. This enzyme can then be used in
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conjunction with ortho-Nitrophenyl-β-galactoside (OPNG) or
4-Aminophenyl β-D-galactopyranoside (PAPG) to produce
either an optical or electrical signal revealing a concentration
dependent response to both compounds.
We chose to first demonstrate the utility of our cellular

detection system using the common Miller assay. This β-gal
assay is an accepted standard as a transcriptional promoter
probe in E. coli; here, we examine the soxS promoter response

to both molecules (Figure 1a). In Figure 1b,c, we found that
the cell responses to both dicamba and Roundup were linear
(to 1.5 uM diquat in Roundup and 4.5 mM for dicamba).
Importantly, these levels coincide with ranges previously
reported to cause acute aquatic toxicity to (i) fish for dicamba
(e.g., >0.45 mM)19,22 and (ii) algae and protozoans for diquat
(e.g., >0.8 μM)the broad-leaf component of Roundup.40,41

At concentrations above these linear ranges, optical measure-

Figure 1. Spectrochemical detection of herbicides using the Miller Assay. (a) Schematic overview of the technique. First, cells are exposed to the
herbicides and “store” the molecular information in the form of SoxR-dependent lacZ expression. Next, the cells are lysed to “retrieve” the
informationthe transcribed β-galactosidase enzyme. Finally, the retrieved information is read out using a spectrochemical analysis of
enzymatically cleaved nitrophenol relative to the optical density of cells lysed (i.e., “Miller unit”). The measured Miller unit increased linearly with
the concentration of diquat in Roundup between 0 and 1.6 μM (b). Similarly, the measured Miller unit increased linearly with the concentration of
dicamba between 0 and 4.5 mM (c). The R2 for the linear regression of the Roundup and dicamba assays were found to be 0.95 and 0.94,
respectively. The Miller assay data beyond the linear range can be found in Figure S1.

Figure 2. Electrochemical interrogation of molecular information transduced by sensor cells. (a) Schematic overview of the electrochemical
measurement. The data “storage” and “retrieval” concepts are identical to the Miller assay (see Figure 1 legend). The electrochemical technique
differs in that the data acquisition step is performed by cyclic voltammetry (CV) and peak current analysis of the enzymatically cleaved p-
aminophenol. The peak current intensity was found to directly relate to the concentration of diquat in Roundup and dicamba, respectively, when
analyzed by CV (scan −0.4 to 0.4 V, scan rate 50 mV/s). Dicamba could be detected from 3.6 to 7.2 mM and 0 to 4.5 mM for LB broth and LB
glucose broth cultures respectively (b). We could detect Roundup diquat between 0 and 1.6 μM for LB broth cultures and 0 and 3.2 μM for LB
glucose broth cultures (c). CVs for LB broth detection can be found in Figures S6−S7. The absolute value of the peak current for both diquat and
dicamba greatly increased when using sensor cells relative to GCE electrode detection of untreated herbicide samples (d). The current was found to
vary linearly between 0 and 0.8 μM and 0 and 1.6 μM for diquat tests (e), and for LB glucose cultures for dicamba between 0 and 4.5 mM (R2 >
0.95 for all analyses) (f). The measured current for LB broth cultures for dicamba varied linearly between 3.6 and 5.4 mM with lower confidence
(R2 = 0.89) (f). The error bars in all plots represent SEM from 3 technical replicates and 3 biological replicates. The presented CVs are the average
of 3 separate samples.
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ments either saturated for Roundup, or dropped precipitously
for dicamba (Figure S1a,b). We suspected the latter was due to
cell toxicity. We confirmed this hypothesis by analyzing the
growth kinetics of cells exposed to dicamba with and without
the sensor plasmid. We discuss these results in the Supporting
Information (Figures S2 and S3). In sum, our results clearly
indicated that the Miller assay represents a convenient method
to assess Roundup and dicamba levels in laboratory samples.
While in Figure 1b we reported the response to Roundup as

a function of one of its ingredients, diquat, our results do not
support that this specific ingredient was responsible for
actuating soxS gene expression. Thus, we subsequently
screened the various Roundup constituents and found that
diquat, and not glyphosate (i.e., the major component within
Roundup formulations), was responsible for activating our
gene construct (see Figure S4a,b; Figure S5a). We also found
that glucose supplementation (e.g., 0.5% w/v) reduced the
cell’s sensitivity to diquat, as noted by a reduced slope of the
cell sensor’s linear region. In Figures S4a and S5a, we found
that the attenuation in β-gal expression was independent of the
genomic SoxRS regulon, as the results in the soxS mutant and
its isogenic parent were identical. Also, because glucose does
not interfere with the Miller assay, we conclude that the
attenuated soxS response was due to glucose-mediated
metabolic changes. We did not further investigate these
changes.
Interestingly, when applying this same test for dicamba, we

found that additional glucose also decreased the slope of the
linear range, and further shifted the linear range to lower
concentrationsthe latter being more useful. We also noted
that reporter signals were greater in a genomic soxS knockout
compared to the isogenic parent, indicating a confounding
relationship with the cell’s normal oxidative stress response

(Figure S4c and Figure S5b compare the ΔsoxS strain vs the
isogenic parent). Upon further inquiry, we found that the
measured changes due to glucose supplementation corre-
sponded to retarded cell growth rates at lower concentrations
of dicamba relative to LB grown sensor cells (Figure S4d). The
shift in growth rate upon glucose supplementation suggests
that glucose sensitizes E. coli to dicamba toxicity. We
concluded from these tests that environmental conditions are
significant for cell based sensors, and glucose, in particular, is a
key regulator of our sensor’s performance.
Armed with this knowledge, we evaluated electrochemical

detection of each of the herbicides using the identical β-gal
produced in the cell-based sensors. We used a similar scheme
as the Miller assay for direct comparison, but instead of using
the colorimetric precursor OPNG, we used the redox “silent”
substrate PAPG, which can be cleaved into a redox-active
component, p-aminophenol (Figure 2a). We found that
dicamba and Roundup could both be detected by measuring
the peak-current of p-aminophenol using cyclic voltammetry
(Figure 2b,c). We also confirmed that the peak-current for
dicamba control samples without the sensor cells was
indistinguishable from background, indicating the signal was
due to the expression level of β-gal (Figure 2d; see Figure S6a
for CV data without sensor cells, see Figure S7a,c for cell-based
detection without the sensor plasmid). Importantly, in Figure
2e,f, we found that the cell sensor responses to Roundup and
dicamba, in both range and sensitivity, as measured electro-
chemically were nearly identical to the analogous measure-
ments using the Miller assay. The peak-current for Roundup,
increased dramatically (∼17×, Figure 2d) compared to
controls without the sensor cells (Figure S6a-c) and without
the soxS-actuator plasmid (Figure S7b,c). An advantage of an
enzymatic reporter is that it can amplify signals; accordingly,

Figure 3. Comparison of the Miller Assay to the electrochemical method. The peak current measured by the electrochemical method linearly
correlated (R2 > 0.95) with measured Miller Unit for detection of both Roundup (a) and dicamba (b). An illustration of future applications of
electrochemical cell-based detection using disposable electrodes (c). 3-pin electrodes would contain a measurement well for application of a
mixture of water samples with sensor cells. This sensor could then be plugged into an adaptor to interface with any mobile electronic, such as the
pictured cell phone, for a simple detection paradigm. A sample 3-pin electrode array was patterned onto a glass wafer (d) and used to test sensor
cells incubated with water from the Anacostia River that was or was not spiked with each herbicide (e). The error bars in a,b represent SEM from 3
technical replicates and 3 biological replicates. The error bars in e represent SEM from 3 biological replicates. The dotted lines represent the 95%
confidence interval of the linear regression fit.
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these results indicated the sensor cells enzymatically amplified
the relevant redox signals by cleaving additional substrate.
As in the case of the Miller assay, we found that the linear-

range of detection could be manipulated by glucose
supplementation (Figure 2e,f; Figures S8−S10). For Roundup,
we found the sensitivity decreased dramatically upon glucose
addition (Figure 2e). Dicamba detection, however, was
improved by glucose supplementation in that the linear
range again shifted to lower concentrations (Figure 2f). We
have no mechanistic explanation for this observation, however.
Importantly, we repeated all cyclic voltametry measurements
with chronocoulometry and found identical trends (Figure
S11).
The concordance between the gold-standard Miller assay

and our electrochemical methodology using PAPG for
quantifying β-galactosidase activity was expected and is highly
accurate. That is, in Figure 3a,b, we replotted the electro-
chemical results as a function of the Miller units. In both cases,
diquat (Figure 3a) and dicamba (Figure 3b), the responses
were linear over the tested ranges. Both of these assays
transform molecular information from diquat and dicamba to
readily accessible forms. In the case of the Miller assay,
measurements are mediated by spectrophotometry and
measurements are made by quantification of yellow color. In
the case of the electrochemical measurements, no such
instrumentation is needed. Instead, the molecular cues carried
by diquat and dicamba are converted directly to electro-
chemical mediators, ultimately to electrical current as
measured by simple electrode systems.42,43

Finally, in Figure 3c−e, we demonstrate a potential
application of this electrochemically motivated synthetic
biology approach by suggesting a miniaturized 3-pin electrode
system with a small sample chamber connected to a
microelectronic controller.43 We supplemented water taken
from Paint Branch Creek, a local tributary of the Anacostia
River, with both diquat and Roundup at similar concentrations
as above. Results indicated significant SoxS activation
from diquat (Roundup) and much less, but statistically
significant activation, from dicamba relative to the fresh
water samples. We also noticed the background CV results
from creek water versus Z-buffer were significantly different−
the peak current from 50 μM PAP was far weaker and occurred
at a less-defined potential (Figure S12). These results are not
optimized for either cell number, background water supply, or
electrode design,12,13 but readily show that the herbicide-
specific sensor cell can provide an indication of these
contaminants.44

In conclusion, our results demonstrate that dicamba and
Roundup can be detected using genetically modified E. coli and
by simple electrochemical analysis using PAP. Importantly, the
levels tested were relevant for toxicity in aquatic systems.22,40,41

These results represent a step forward in developing rapid,
inexpensive, and simple measurement techniques for evaluat-
ing contamination of various aquatic samples from toxic
herbicides.31,45−51 We envision future applications will focus
on disposable, prepackaged sensors that can easily integrate
with basic electronics for mobile detection.
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